NABERS

Introducing the NABERS embodied carbon tool

Katie Eyles

NABERS is Australia's largest building sustainability initiative

Sydney

Brisbane

Melbourne

Perth

Measurement leads to improvement

Greenhouse gas emissions from buildings

NABERS has been developing the national standard for embodied carbon since 2021

Decision makers

Developers, owners, tenants

Project teams

Architects, engineers, quantity surveyors, construction, LCA experts

Influencers

Policy makers, investors, industry peaks, standards bodies, academics

Supply side Product manufacturers

What the NABERS embodied carbon standard will look like

It will focus on new buildings and major refurbishments. It will capture emissions from building materials, transport and construction. It will enable buildings to set and verify targets, then certify as built.

It will encourage using products with known emissions (EPD certified).

How to measure

(Transport + construction) + Quantity of material x emissions of material

PRODUCT		CONST RUCTIO N			USE					END OF USE				
A1: Raw material supply	A2: Transport	A3: Manufacturing	A4: Transport	A5: Construction	B1: Use	B2: Maintenance	B3: Repair	B4: Replacement	B5: Refurbishment	C1: Deconstruction	C2: Transport	C3: Waste processing	C4: Disposal	D: Recovery, reuse, recycling
Upfront carbon				B6: Operational energy use B7: Operational water use										

What materials to measure

- Main structure of the building
- Major mechanical services and vertical transport

Material quantities: as built

- Bill of quantities
- Evidence of what was delivered to site

Bill of quantities

Emissions data

Environmental product declaration (EPD)

- Strong industry preference for product specific emissions data, i.e. EPDs
- NABERS emission factors database

How to measure

(Transport + construction) + Quantity of material x emissions of material

NABERS national emission factors database

How we created defaults

- Are products performing the same function?
- Do we need to divide based on production technology?
- Does it match the materials found in quantity data?
- Does it match what industry and manufacturers expect?

1. Define groups

2. Source emission factors

3. Statistical analysis

4. Qualitative analysis

How we created defaults

- Did we get all key suppliers and products that are in the market?
- Is there anyone missing?
- Is the data skewed to one product or type of product within the grouping?
- Is there appropriate geographical representation particularly for imported products?
- How does the average EF compare to other EF sources (i.e. AusLCI)?

						Quantity basis (kgCO ₂ e/declared unit)			
Emission Factor material type	Emission Factor material category	Description	Declared unit	Data qualitative Rating	Uncertainty adjustment (%)	Default (uncertainty adjusted)	Max in category EF	Min in category EF	Average EF
Concrete in-situ	≤10 MPa	Any concrete mix with a strength rating of 10 MPa or lower.	mª	Tier 3	110%	273	248	142	181
Concrete in-situ	>10 MPa to ≤20 MPa	Any concrete mix with a strength rating of 20 MPa or lower and greater than 10MPa	m²	Tier 1	102%	371	364	136	198
Concrete in-situ	>20 MPa to ≤25 MPa	Any concrete mix with a strength rating of 25 MPa or lower and greater than 20 MPa	m,	Tier 1	102%	396	388	149	220
Concrete in-situ	>25 MPa to ≤32 MPa	Any concrete mix with a strength rating of 32 MPa or lower and greater than 25 MPa	mª	Tier 1	102%	468	459	167	249
Concrete in-situ	>32 MPa to ≤40 MPa	Any concrete mix with a strength rating of 40 MPa or lower and greater than 32 MPa	m³	Tier 1	102%	556	545	185	300
Concrete in-situ	>40 MPa to ≤50 MPa	Any concrete mix with a strength rating of 50 MPa or lower and greater than 40 MPa	m³	Tier 1	102%	621	609	101	357
Concrete in-situ	>50 MPa to ≤65 MPa	Any concrete mix with a strength rating of 65 MPa or lower and greater than 50 MPa	mª	Tier 2	105%	640	609	274	382
Concrete in-situ	>65 MPa to ≤80 MPa	Any concrete mix with a strength rating of 80 MPa or lower and greater than 65 MPa	mª	Tier 3	110%	670	609	301	426
Concrete in-situ	>80 MPa +	Any concrete mix with a strength rating above 80 Mpa	m²	Tier 4	120%	731	609	444	444
Concrete pre-cas	it Wall panel - precast c	c Any precaste concrete panel i.e. wall, deck, or balcony panel.	tonne	Tier 4	120%	261	218	183	208

The NABERS embodied carbon standard

Emissions Including a national database of default emission factors Scope A standardise scope and documentation requirements **Certification** As-built verification of the emissions of a building

Benchmarks To set targets and compare buildings against others

National agreement

- Developed in partnership with the GBCA and industry
- Fully aligned with international standards for measuring embodied carbon in buildings
- Joined up approach with Infrastructure NSW, Infrastructure Australia, Climate Active
- Approved by the NABERS National Steering Committee, by all states and territories
- Already in policy: NSW Sustainable Buildings SEPP, Environmentally Sustainable Procurement Policy, voluntary pathway in NCC 2025

Launching November 2024

• Piloting now

Thank you

katie.eyles@environment.nsw.gov.au

